
nirva systems info@nirva-systems.com nirva-systems.com

How-to: Performance measurement
and optimisation

Document version: 1.01

http://www.nirva-systems.com/

How-to: Performance measurement and optimisation - page 2

Nirva can measure performance with the command line tool "nvcc". It can simulate heavy usage of a
particular process by defining how many concurrent sessions Nirva can launch and how many loops each
session should perform.

It is also possible to display the execution time of each command or procedure on the server.

Testing performance
This can be done with the nvcc tool. Of course, any other external tool can also be used.

nvcc must be executed from a console window command line with the usual parameters followed by the ‘-b’
option and l=A:r=B. B is the number of threads that will execute the command file (please refer to “
Tools/nvcc/input file format” in the Nirva documentation for more details) and A is the number of times each
thread will execute the command file.

nvcc will then:

� Create the number of threads specified and establish for each of them a connection with the Nirva
server, thus creating a new session. Once all the threads are ready, a request is sent to each thread
to execute the file specified in the command. The number of threads and the number of executions are
specified in the command as described above.

� Wait until all threads have finished the operation and then disconnect them from the server.

� Display the wall clock time needed to execute the processes, not including connecting and
disconnecting the sessions.

For all available parameters for nvcc, please refer to the Nirva documentation or execute nvcc with the ‘-h’
option.

Example
Please find below an example with a command file on a local Nirva server with the NVDEF application:

http://www.nirva-systems.com/

How-to: Performance measurement and optimisation - page 3

Example of a direct call of a procedure on a remote server on the TEST application:

�
Performance tests should be done when all unnecessary programs are deactivated.
Nirva should not be in debug mode, nor in verbose more and logs must be deacti-
vated (or at least set to an identical level than the production one). Anti-virus sys-
tems can significantly impact performance especially when the processes are ac-
cessing heavily disk drives.

http://www.nirva-systems.com/

How-to: Performance measurement and optimisation - page 4

Detailed measurement of execution time
Nirva can display execution time of commands or procedures. This function is particularly usefule to
diagnose any potential performance issue.

In order to display execution times, Nirva should be executed in console mode with the “-t” option:

This displays the execution time of external commands and procedures (connectors).

�
Minimum resolution is 10 milliseconds. A displayed time of 0 indicates that the exe-
cution time was less than 10 milliseconds.

In order to display execution time for each command, the "-v" (verbose) option should be used when starting
Nirva in console mode:

http://www.nirva-systems.com/

How-to: Performance measurement and optimisation - page 5

Performance optimisation
It is possible to use load balancing functions to optimise the performance of Nirva enabled processes by
adding more servers and running processes in parallel. To this end, the Nirva Workflow service greatly
simplifies the setup of business applications with high performance in a multi-server architecture.

It is also possible to develop procedures taking performance into account. A Nirva command is relatively fast
but needs decoding parameters. Other operations can take a certain time as well. Whenever possible, Nirva
commands should be sparingly used, especially in loops. Nirva supplies object manipulation commands that
allow working on a number of entities with a single command.

Here is an example of a table with not optimised commands:

NV_CMD=|OBJECT:CREATE| NAME=|TEST| TYPE=|TABLE|

NV_CMD=|OBJECT: TABLE_INSERT_COLUMN| NAME=|TEST| COLNAME=|Name|");

NV_CMD=|OBJECT: TABLE_INSERT_COLUMN| NAME=|TEST| COLNAME=|Items|");

NV_CMD=|OBJECT: TABLE_INSERT_ROWS| NAME=|TEST|");

NV_CMD=|OBJECT:TABLE_INSERT_CELL_LINE| NAME=|TEST| ROW=|0| COLNAME=|Name|

LINE=|Name1|");

NV_CMD=|OBJECT:TABLE_INSERT_CELL_LINE| NAME=|TEST| ROW=|0| COLNAME=|Items|

LINE=|Item11|");

http://www.nirva-systems.com/

How-to: Performance measurement and optimisation - page 6

NV_CMD=|OBJECT:TABLE_INSERT_CELL_LINE| NAME=|TEST| ROW=|0| COLNAME=|Items|

LINE=|Item12|");

NV_CMD=|OBJECT:TABLE_INSERT_CELL_LINE| NAME=|TEST| ROW=|0| COLNAME=|Items|

LINE=|Item13|");

NV_CMD=|OBJECT:TABLE_INSERT_CELL_LINE| NAME=|TEST| ROW=|1| COLNAME=|Name|

LINE=|Name2|");

NV_CMD=|OBJECT:TABLE_INSERT_CELL_LINE| NAME=|TEST| ROW=|1| COLNAME=|Items|

LINE=|Item21|");

NV_CMD=|OBJECT:TABLE_INSERT_CELL_LINE| NAME=|TEST| ROW=|1| COLNAME=|Items|

LINE=|Item22|");

The code above uses 11 Nirva commands to create and populate a relatively simple table.

Here is the same functionality developed with a single command:

NV_CMD=|OBJECT:CREATE| NAME=|TEST| TYPE=|TABLE| COLUMNS=|Name;Items| ROWSEP=|§|

LINESEP=|µ| COLSEP=|;| VALUE=|Name1;Item11µItem12µItem13§Name2;Item21µItem22|

This simple example illustrates how certain command scan be used more effectively to optimise code and
therefore increase performance. Please find below a non exhaustive list of some commands of the OBJECT
class that could help increasing performance:

� CREATE

� STRINGLIST_GET_VALUES

� STRINGLIST_INSERT

� STRING_LIST_SET_VALUE

� INDSTRINGLIST_GET_VALUES

� TABLE_ADD_COLUMNS

� TABLE_ADD_ROWS

� TABLE_CLEAR_ROWS

� TABLE_GET_COLUMN

� TABLE_GET_ROW

� TABLE_GET_ROWS

� TABLE_INSERT_ROWS

� TABLE_IMPORT

� TABLE_EXPORT

� TABLE_SEARCH

� TABLE_SET_ROW

http://www.nirva-systems.com/

